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Observation of intermixing at the buried CdS/Cu  (In,Ga)Se, thin film solar
cell heterojunction
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A combination of x-ray emission spectroscopy and x-ray photoelectron spectroscopy using high
brightness synchrotron radiation has been employed to investigate the electronic and chemical
structure of the buried CdS/Qn, GaSe, interface, which is the active interface in highly efficient

thin film solar cells. In contrast to the conventional model of an abrupt interface, intermixing
processes involving the elements S, Se, and In have been identified. The results shed light on the
electronic structure and interface formation processes of semiconductor heterojunctions and
demonstrate a powerful tool for investigating buried interfaces in general19€® American
Institute of Physicg.S0003-695(99)03910-9

Thin film solar cells based on a CdS/Qy GaSe, het-  specific way to determine that the buried interface is clearly
erojunction are one of the most promising and efficient sysnonabrupt with a graded distribution of S, Se, and In across
tems in their field. Photovoltaic conversion efficiencies up tothe heterojunction.

17.7% on a laboratory scaland up to 11.8% for full size We present data obtained by a combination of photoelec-
modules(1.2 kW) have been achievedand the use of stan- tron spectroscopyPES and x-ray emission spectroscopy
dard industrial thin film deposition techniques makes this(XES) at beamline 8.0 of the Advanced Light Soufce.
system a cost-effective candidate as well. Despite the imporfhese techniques are both atom specific and sensitive to the
tance of the C(In, GaSe, (CIGS) based solar cefl,how- electronic structure, and their combination enables us to de-
ever, the microscopic mechanism of how the photon-excitedive information from a large range of experimental probing
charge carriers are separated and transported to the eléd€pPths. Samples with different CdS overlayer thicknesses
trodes is far from being fully understood. All existing models Were prepared by rapid thermal processiRgP) of elemen-
explaining the electronic properties of the heterojunction ard@! €U, In, Ga, and Se layers on a Mo-coated Na-lime flass

based on an abrupt interface between the CdS buffer lay@"d Py chemical bath depositid@BD) of CdS, with both

and the CIGS absorber material. In contrast, it is the purpostémhn'ques being identical to the large-scale industrial ap-

of this letter to demonstrate a nondestructive and atomproach.. . . .
Originally, it was envisioned by some that the interface

between p-type CIGS and n-type CdS is the p-n junction
. . N responsible for the charge carrier creation and separation
dpresent address: Experimentelle Physik 1I, Universkarzburg, Am Hu- d | I e
bland, D-97074 Wizburg, Germany; electronic-mail: heske@physik.uni- necegsary to produce a solar cell currertowever, PES
wuerzburg.de experiments suggest that for evaporated CdS on a single-
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FIG. 2. X-ray emission spectra of the electronic transition between valence
FIG. 1. Photoemission spectra of the Se 3d core levels for various CdS fllrﬁand states and ionized S 2p core levels, for various CdS thickngases
thicknesses on Gln, Ga)Se,, normalized by the exciting x-ray beam inten- (d), excitation energy #=208eV] and excited between the ionization
sity, scaled as indicated, and offset along the intensity axis. thresholds of S 2, and S 2p,, (e, v=162.7 eV).

crystal CulnSe substrate, at+ 0.6 eV (upward conduction of the electrons contributing to the Se 3d peak

band barrier existd Moreover, Schmidt al. suggest that the (Ec. =746 eV) is on the order of 1 nm, which makes PES a

actual p-n junction in the thin film solar cell is formed within " . . .
the CIGS absorber between an n-type ordered defect confeY surface sensitive probe. With such high surface sensi-

pound at the CIGS surface and the CIGS bulk, and the)@lity and with asimp_le attenuation moqlel one would expect
derive an essentially flat conduction band between CIGS an at the S? 3d PES signal for CIGS buried una& nm CdS
Cds? Note that, with PES, only the valence band offset Camoverlayer is attenuated by a factqr of about. 150. For a 50 nm
be determined, and a conduction band offset has to be cafVerlayer, the expected attenuation factor i$10n our ex-
culated by assuming appropriate band gaps. Also, the preVper-im.ents such a rapid attenuation. is only observed for Cu
ous results were obtained wivaporatedCdS. An indirect  €mission(3d levels from Cu atoms in the CIGS layer, and
determination of the CBD CdS/CIGS band offset also de{0r Na impurities originating from the soda-lime glass sub-
rives an essentially flat conduction band across the junctiorst'ate; V;’h'Ch are identified to be localized at the CIGS
but again appropriate band gaps have to be asstfned. surface'® In contrast we find that the Se S|gnals are attenu-
In the case of a graded junctigas will be demonstrated at€d much less. Because the CdS layer thickness commonly
here for CBD Cd$ the assumption of uniform band gap €mployed in CIGS based cells is about 15 nm, it is very
values for the heterojunction partners is incorrect. For exlikely that Se is present throughout the entire CdsS film, pre-
ample, by forming Cd§ ,Se, instead of CdS in the over- Sumably forming a sulfoselenide. As mentioned above, there
layer, the band gap can be decreased from 2.4 eX4dd to IS also evidence for In diffusion into the overlayer. However,
1.8 eV forx=1. Similarly, the band gap of Culng¢1.1  an In photoemission signal could only be observed for CdS
eV) is increased by forming CulgSe,_,, with a maximum thicknesses of 5 and 15 nm, but not for 50 nm, indicating
gap of 1.5 eV fory= 2. With CBD being the preferred tech- that the diffusion length for In is smaller than that for Se. It
nique to deposit CdS for CdS/CIGS-based solar cells, it is therefore appropriate to distinguish two different regions
crucial to understand the chemical and electronic propertie®ithin the overlayer: an interface-near region of the general
of the graded junction in order to understand the perforform Cd,In,S; ,Sg, and a Cd$_,Se region further away
mance of the whole solar cell device. It should also be notedrom the interface. Note that all stoichiometries will vary
that in the case of CdS/CdTe solar cell intermixing is wellthroughout the overlayer.
accepted and believed to usually enhance the cell Analogous to a diffusion of Se into the overlayer, a si-
performancé? multaneous diffusion of S into the CIGS substrate is to be
During the formation of the CdS/CIGS interface Se andexpected. We did in fact find direct spectroscopic evidence
In diffuse into the CdS overlayer. For Se, this can be derivedor such behavior in the x-ray emission spedtES), as
from the photoemission spectra of Fig. 1. A detailed discusshown in Fig. 2. In this experiment, the S 2p core levels are
sion of the In diffusion will be presented elsewhere. A sig-ionized and the x-ray emission due to electronic transitions
nificant Se signal can be observed for samples with Cd$rom the valence band region into these core holes is moni-
thicknesses up to 50 nm, and a weak structure remains fdored with an energy-dispersive detector. In particular, emis-

even higher coverages. Note that the inelastic mean free paiion lines representing the S32p transitions, the
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nesses €50 nm) our experiments provided no evidence for
CdS,,Se, a pure CdS layer at any sample depth.

__________ ) These findings show that the idea of an abrupt CdS/
CIGS interface is incorrect, at least for the technologically
--------------------- relevant case of chemical bath deposition of CdS on
Cu(In, GaSe thin films manufactured by rapid thermal pro-
cessing. Previous conduction band offset analyses will have
to be reinterpreted in light of a significantly more complex
Na-lime glass buried interface. Moreover, we have demonstrated that a
combination of two x-ray based techniqugshotoelectron

spectroscopy and x-ray emission spectros¢moystitutes a
FIG. 3. Schematic diagram of the thin film CdS(CGy GaSe, solar cell P Py Y P ¢

(left), showing the intermixing behavior at the buried photovoltaic interfacepowerfljII tool to mvestlg{:\tg the .at.om-speCIf.IC structure of
(right). Layer thicknesses are not drawn to scale. buried interfaces and their intermixing behavior.
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